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Abstract 

A fundamental problem in mathematics is to decide whether such 
smooth, physically reasonable solutions exist for the Navier-Stokes 
equations. We restrict attention here to incompressible fluids filling all 

of .nR  The Cauchy problem for the nD Navier-Stokes equations         
is reduced to the integral equations of Volterra and Volterra-Abel, 
investigation of which, allows us to solve positively question on 
uniqueness and smoothness of the solution. 

1. Introduction 

It is known that the Navier-Stokes equations are important for 
investigation of properties of fluid motion and difficult for qualitative 
analysis (see for instance, Caffarelli et al. [3] or Schlichting [9] and       
others). These equations are to be solved for an unknown velocity vector 

( ) ( ) ( )[ ]txvtxvtxv n ,...,,,, 1=  and pressure ( ),, txP  ( ) ×=∈ ∗
nRTtx,  
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[ )( ).,0 ∞=+R  The Navier-Stokes equations are then given by [12]: 

 ( )∑
=

=Δμ+
ρ

−=+
n

j
ixiixjit nivPfvvv ij

1
,,1,1  (1.1) 

( ) ( [ ]),,0,,,0 0TRTTtxdiv n ×=∈∀=ν ∗  (1.2) 

( ) ( ) ,...,,,...,, 1100
n

nniti Rxxxxvv ∈=| =  (1.3) 

where ( )txfi ,  are the components of a given, externally applied force          

(e.g., gravity), μ is a positive coefficient (the viscosity ,)0>μ  and =Δ  

∑
= ∂

∂n

i ix1
2

2
 is the Laplacian in the space variables. The Euler equations are 

equations (1.1), (1.2) with m set equal to zero. There are many fascinating 
problems and conjectures about the behavior of solutions of the Euler 
equations (see Beale et al. [1], Constantin [2], Schlichting [9] or Scheffer 
[10]). 

Starting with Leray [5], an important progress has been made in 
understanding weak solutions of the Navier-Stokes equations. To arrive at 
the idea of a weak solution of a PDE, one integrates the equation against a 
test function and then integrates by parts (formally) to make the derivatives 
fall on the test function. The partial regularity theorem of [3, 6] concerns         
a parabolic analogue of the Hausdorff dimension of the singular set of a 
suitable weak solution of Navier-Stokes problems. 

Standard methods from PDE appear inadequate to settle the problem (see 
Fefferman [12]). Therefore, starting with paper [7], an important progress  
has been made in understanding smoothness of a solution of the 3D       

Navier-Stokes equations in ( ).0
2

;3 DGn λ=  Note, by theorem of Sobolev [11], 

the suitable solutions of Navier-Stokes problem in space ( )0
2

;3 DWn λ=  were 

constructed in [7, 8], that is, the 3D Navier-Stokes system admits a unique 
global-in-time weak solution. 
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This is the first of a series of papers devoted to the initial value problem 
for the nD Navier-Stokes system of incompressible fluids. In the present 
paper, we establish the existence and uniqueness of a solution of the nD 

Navier-Stokes system in ( ( )),,0 00
1 TRDG n
n ×=  where the norm of this space 

is defined by the following: 

( ) ( )∑
=

=ν
n

i
DGiDG v
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1  
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n1 20
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It is known that the turbulence solutions are conditional smooth in 
analytical sense [4, 9] for .10 <μ<  Therefore, we consider a class of 

suitable solutions of the Navier-Stokes problem in weight space of Sobolev’s 

type ( ( ))∞×=∗λ ,02
;

n
n RDW  with the norm 
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Our result about the nD Navier-Stokes system concerns the Cauchy 
problem with certain initial data. In the course of writing this paper, we 
discovered a natural restriction on the initial data of the Navier-Stokes 
system, which we refer to as the necessary conditions of resolvability           

in ( ),0
1 DGn  ( ).2

, ∗λ DWn  It turns out to play a fundamental role in the 
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mathematical theory of the Navier-Stokes systems. We do not attempt           
here to review the vast literature on the Navier-Stokes system, since there  
are fundamental works in this area (see for instance, Caffarelli et al. [3], 
Schlichting [9] or Scheffer [10] and others). 

2. The Strict Solution of the Navier-Stokes Equation with Viscosity 

There are various mathematical transformations in the theory of           
the differential equations in partial derivatives which simplify investigated 
problems and allow us to find the solutions in certain spaces [3, 5, 6, 9].          
For ,0>μ  we show that the Navier-Stokes problem can be transformed           

to inhomogeneous linear equations of heat conductivity type under Cauchy 
condition that has the strict solution, consequently, the nD Navier-Stokes 

problem has the strict solution in space ( ).2
; ∗λ DWn  At least, this solution answers 

to mathematical question, and allows to construct the solution of the Navier-Stokes 
problem (1.1)-(1.3) for an incompressible fluid with viscosity. 

Let us restrict attention to forces f and initial conditions 0ν  that satisfy 

 
( ) ( ) ( )

( )⎪⎩

⎪
⎨
⎧

=ν≠

=ϑλ≡=| =

,...,,;0

,,1,...,,...,,

0010

10100

n
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vvfdiv

nixxxxvv
 (2.1) 

where ,0 iλ<  ( )ni ...,,1=  are fixed constants. Then speed components ν 

are defined by the rules 

( ) ( ) ( )
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,...,,,...,,

,,1,,...,,,,...,,

 (2.2) 

Hence, the system (1.1) is transformed to the system of inhomogeneous linear 
equations 
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 ( ).,1,1 niPf ixiti i =ϑΔμλ+
ρ

−=ϑλ  (2.3) 

Here ϑ is a new unknown function which, by (2.2), defines the solution          
of the Navier-Stokes problem. To solve the system (2.3) at first, we define a 
pressure P. From system (2.3), by conditions (2.1), (2.2) and “Algorithm 
Poissonization System - APS” ([7]: for this, we take the partial derivations          
of the system (2.3) at ,ix  and summarizing the obtained equations by the 

formula (1.2)), we obtain 
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 (2.4) 
Thus, by (2.4), the system (2.3) is equivalent to 

( )

( )

( ) ( ) ( ) ( ) ( ) ( )⎪
⎩

⎪
⎨

⎧
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 (2.5) 

It means that system (2.3) is transformed to the inhomogeneous linear 
equations of heat conductivity with a condition of Cauchy (2.5). It is well-
known that the problem (2.5) with enough smooth initial data is decidable 
[11]. Namely, the strict solution is 

( ) nnnR

n

i
in

ddtxtxn ττμτ+μτ+ϑ
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2 2...,,2exp1  
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( ( )∫ ∫ ∑ −μτ+Φ
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
τ−

π
+

=

t
nR

n

i
in

xstxn0 110
1

2 ...,,2exp1  

( ) ) dsddsst nn ττ×−μτ+ 1;2  

( ) ( ( )),2;2,,...,,1 stxstxstxx iiiiiin −μτ=−μτ=−Ψ≡  (2.6) 

Ψ is a known function. The solution (2.6) has the same properties of the          
usual solution of heat conductivity equation. For example, throughout and for 
definiteness, we always assume that the following assumptions are satisfied: 
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 (2.7) 

Then the solution (2.6) of problem (2.5) is bounded by norm of the space 

( )∗λ DW 2~
 and we get estimations 

( ) ( ) ( ).const0,2 010131~ 2 =<=β+β≤β+β+β≤ϑ ∗∗λ kkkDW mKqmqm  

 (2.8) 
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Hence, by transformation (2.2), we have the strict solution of system 
(1.1) which satisfies the condition (1.2). According to (2.1) and (2.7), there          
is a conditional smooth and unique solution of the Navier-Stokes problem in 

( )∗λ DWn
2
;  that is defined by (2.2), at that 

( ) ( ) ( )∑ ∑ ∑
= = =

∗ ⎟
⎟
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⎞
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λ=≤ϑλ==ν
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n
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n

i

n

i
iDWiDWiDW dKdv

n
1 1 1

00~~ .,222
,

 

 (2.9) 

Theorem 1 (Weak solutions to the Navier-Stokes system). Consider the 
Cauchy problem (2.5) for linear equations of heat conductivity type associated 
with the Navier-Stokes system (1.1) by (2.2), when the spatial domain 

.+∗ ×= RRT n  Assume that the initial data satisfy conditions (2.1), (2.7)  

and finally, take place (2.8), (2.10). Then the Cauchy problem for the  
Navier-Stokes equation (1.1) admits a global-in-time weak solution in 

( ).~ 2
∗λ DW  Therefore, the Navier-Stokes system has the unique solution in 

( ).2
; ∗λ DWn  

Remark. Results of the specified point are connected with condition 
(2.1). It is known that not always the initial data is satisfied with the given 
condition. Therefore, in Section 3, we consider Navier-Stokes system (1.1) 
with the general condition (1.3). 

3. Fluid with Small Viscosity 

In Section 3, we consider the Navier-Stokes system (1.1) and we 
establish an existence theory and uniqueness of a solution for the Navier-
Stokes system, when the initial data have certain restrictions. With that end 
in view, let us consider updating of the basic method (2.2), when 
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here ,0,0 iλ<δ  ( )ni ...,,1=  are fixed constants. We see that the components 

of speed grow faster than the components of speed in (2.2) by the regulatory 
functions ( ),...,,1, nii =Ω  where .10 <μ<  

There are the various partial experimental methods connecting speed and 
pressure. Here we offer the method using regulatory functions for getting 
connections between pressure and speed, and this distribution law allows us 

to express speed in the integral form, when .nR∈ν  

Offered method of integral transformations reduces the nonlinear Navier-
Stokes problem to inhomogeneous linear problem of heat conductivity. In this 
case, problem of heat conductivity is reduced to the system of integral equations 
of Volterra and Volterra-Abel [11]. Thus, it is possible to find the analytical 
solution by the theory of the integral equations. 

Let the components of a vector of speed ν and ,if  ( )ni ...,,1=  be the 

components of a given externally applied force satisfying conditions (1.3) and 
(3.1). Then, by transformation 
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the Navier-Stokes equation (1.1) becomes simpler because 
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Really, by (3.2) and (3.3), from the problem (1.1)-(1.3), we get 
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From system (3.4), by APS and conditions (3.1), (3.3), we obtain 
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This is a distribution law of pressure in the form of (3.5). At first, the       
similar results were obtained in the paper [7]. By (3.5), the system (3.4) is 
equivalently transformed to 
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The problem (3.6) leads to the system of the integrated equations 
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The system (3.7) consists of the integral equations on a variable 
( ) .,...,,1 Ttxx n ∈  We need to establish that the precompactness [11] of the 

family of (3.7) solutions satisfying, in other words, from any sequence, we 
can extract a subsequence that converges (in a suitable topology) to a 
solution to (3.7). This is the property required in order to deduce the strong 
convergence of approximate solutions to (3.7) and eventually, establish the 
existence of actual solutions. On the other hand, several standard methods are 
available for the construction of approximate solutions, one can for instance 
use Picard’s method and we refer to paper [11] for further details concerning 
system (3.7). 

Really, since 0δ  is small enough number, the operator 0Γ  satisfies conditions 

of a principle of compression. Then the solution of system ((3.7), the second 
equation) ,0ωΓ=ω  can be found by Picard’s method, that is, 
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Hence, by ((3.7), the first equation) ,ωΓ=ϑ  it follows: 
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By taking into account the over established iteration process and the 
corresponding inequalities, one can state the following, i.e., the inequalities 
(3.8) and (3.9), assure the system (3.7) solution uniqueness. 

Really, let us suppose that the system (3.7) does possess not only the 
solution { }ωϑ,  but also another one { },, ωϑ  where ωΓ=ϑ  and .0ωΓ=ω  

It follows, by putting 
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which is satisfied if and only if ,0=ω−ω C  i.e., ;ω≡ω  .ϑ≡ϑ  
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But if the successions’ { }∞ϑ 0m  and { }∞0, miv  convergence conditions 

have been studied, then the assertion ,lim mi
m

Aϑ
∞→

 ( )ni ,1=  belongs to the 

classes of functions ( ).~
0

1 DG  Thus, we have 

Theorem 2. Consider the Navier-Stokes system (1.1) posed on the =T  

[ ]0,0 TRn ×  and with prescribed initial data (3.1) and conditions (3.8)-

(3.10). Then there exists the unique solution of the system (3.7) in ( ).~
0

1 DG  

Therefore, by (3.2), the Navier-Stokes system has the unique solution in 

( ).0
1 DGn  

Remark 1. The similar results are take place for fluid with viscosity, 
when .00 ≡ϕ δi  In this case, 10 0 <δ<  (see (3.2)), it is entered taking into 

account a condition (3.8). 

4. Conclusions 

The offered analytical methods of solution of nD Navier-Stokes       
problem transform this problem to inhomogeneous linear equations of           
heat conductivity type under Cauchy condition with enough smooth initial 
conditions, without attraction of any additional conditions. The analytical 
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solutions of transformed equations are regular with respect to viscosity factor 
and simplify analysis of the initial problem in mathematical sense. 
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