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Abstract

A fundamental problem in mathematics is to decide whether such
smooth, physically reasonable solutions exist for the Navier-Stokes
equations. We restrict attention here to incompressible fluids filling all
of R". The Cauchy problem for the nD Navier-Stokes equations
is reduced to the integral equations of Volterra and Volterra-Abe,
investigation of which, allows us to solve positively question on
unigqueness and smoothness of the solution.

1. Introduction

It is known that the Navier-Stokes equations are important for
investigation of properties of fluid motion and difficult for qualitative
analysis (see for instance, Caffarelli et a. [3] or Schlichting [9] and
others). These equations are to be solved for an unknown velocity vector

v(x, t) = [v(X, t), ..., vy(x, t)] and pressure P(x,t), (x,t)eT, =R"x
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(R; = [0, »)). The Navier-Stokes equations are then given by [12]:

n
1 . —
Vit + ZVjVixj = fi —pri +pAy;,  (i=1n), (11)
j=1
divv =0, V(x,t)eT,, (T=R"x[0, To]), (1.2
Vilico = Voi (g, vor X))y (Xgs o Xp) € R, (1.3)

where fj(x, t) are the components of a given, externally applied force
(e.g., gravity), u is a positive coefficient (the viscosity pu > 0), and A =

n A2
26—2 is the Laplacian in the space variables. The Euler equations are
i=1 0X

equations (1.1), (1.2) with m set equal to zero. There are many fascinating

problems and conjectures about the behavior of solutions of the Euler
equations (see Beale et al. [1], Constantin [2], Schlichting [9] or Scheffer

[10]).

Starting with Leray [5], an important progress has been made in
understanding weak solutions of the Navier-Stokes equations. To arrive at
the idea of a weak solution of a PDE, one integrates the equation against a
test function and then integrates by parts (formally) to make the derivatives
fall on the test function. The partial regularity theorem of [3, 6] concerns
a parabolic analogue of the Hausdorff dimension of the singular set of a
suitable weak solution of Navier-Stokes problems.

Standard methods from PDE appear inadequate to settle the problem (see
Fefferman [12]). Therefore, starting with paper [7], an important progress
has been made in understanding smoothness of a solution of the 3D

Navier-Stokes equations in 6323;X(D0). Note, by theorem of Sobolev [11],

the suitable solutions of Navier-Stokes problem in space anzg;x(Do) were

constructed in [7, 8], that is, the 3D Navier-Stokes system admits a unique
global-in-time weak solution.
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This is the first of a series of papers devoted to the initial value problem
for the nD Navier-Stokes system of incompressible fluids. In the present
paper, we establish the existence and uniqueness of a solution of the nD
Navier-Stokes system in G%(DO = R" x (0, Ty)), where the norm of this space
is defined by the following:

| v ”Gl(Do) = Z” Vi ”Gl(DO)
i=1

To
> ||Dkvi||C(T)+supIO Vg (X, s Xn, 1) [dE Y.
i=1 (0<] k|<2 R"

It is known that the turbulence solutions are conditional smooth in
analytical sense [4, 9] for 0 < u <1. Therefore, we consider a class of

suitable solutions of the Navier-Stokes problem in weight space of Sobolev’s

type W2, (D, = R" x (0, «0)) with the norm

n
Iv "sz(D*) = Z" Vi ”WZ(D*
o .
Z Z supJ.0 M) [DRV; (X, ooy Xy, )] dt

" 2
+ sup . M) [Vie (Xq, - xn,t)]zdt ;

0< x(t):j;’o Mot ldt = q5, (j=0,2).

Our result about the nD Navier-Stokes system concerns the Cauchy
problem with certain initial data. In the course of writing this paper, we
discovered a natural restriction on the initial data of the Navier-Stokes
system, which we refer to as the necessary conditions of resolvability

in G%(DO), Wn%x(D*). It turns out to play a fundamental role in the



592 Taalaibek D. Omurov

mathematical theory of the Navier-Stokes systems. We do not attempt
here to review the vast literature on the Navier-Stokes system, since there
are fundamental works in this area (see for instance, Caffarelli et al. [3],
Schlichting [9] or Scheffer [10] and others).

2. The Strict Solution of the Navier-Stokes Equation with Viscosity

There are various mathematical transformations in the theory of
the differential equations in partial derivatives which simplify investigated
problems and allow us to find the solutions in certain spaces [3, 5, 6, 9].
For n >0, we show that the Navier-Stokes problem can be transformed

to inhomogeneous linear equations of heat conductivity type under Cauchy
condition that has the strict solution, consequently, the nD Navier-Stokes

problem has the strict solution in space an; 5. (Dy ). Atleast, this solution answers

to mathematical question, and allows to construct the solution of the Navier-Stokes
problem (1.1)-(1.3) for an incompressible fluid with viscosity.

Let us restrict attention to forces f and initial conditions v that satisfy

{vi o0 =010, %) = 248000, - ) (=T

divf #0; vg = (Vor, - Von).

where 0 < %, (i =1, ..., n) are fixed constants. Then speed components v

are defined by the rules

Vi = Ai9(Xq, vy Xy £), (Xgy vy X, 1) €Ty, (i =1,_n),

8|t=0 = 30(X1, ey Xn), (Xl, ey Xn) S Rn, (22)
n n n

divv = 0: ijng =0 Zvjvin - xistjSXj = 0.
j=1 j=1 j=1

Hence, the system (1.1) is transformed to the system of inhomogeneous linear
equations
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A% = f 1P + A%, (i=Ln 2.3
|t—|_5xi+ul , (i=1n). (233)

Here 9 is a new unknown function which, by (2.2), defines the solution
of the Navier-Stokes problem. To solve the system (2.3) at first, we define a
pressure P. From system (2.3), by conditions (2.1), (2.2) and “Algorithm
Poissonization System - APS” ([7]: for this, we take the partial derivations
of the system (2.3) at x;, and summarizing the obtained equations by the

formula (1.2)), we obtain
n

Zaﬂ(z 3): lAP — _0,F,
i=1

0, = 2(n—2) [r(gﬂ_lh_“ Ry = —(en)—lzn: fi (44, s Xs 1), (02 3),
i=1

1 ds; ---dsp
EP = J.Rn Fo(Sl, o S, t)rn—_z,

[f :wfzn:(xi —5)2r s - X =T i =1,_“]’
i-1

1 Ti(n - 2)F0(X1 + T1y oy Xn + ’tn; t)d-cl...d»[n
—PXI :I n 2 on = (I)(X]-,
P R \/(’L’l +"'+’Cn)

o Xy ).

24
Thus, by (2.4), the system (2.3) is equivalent to 9
9t = @g(Xq, -y X, t) + pHAY,
lt=0 = 39X, -y Xp), (2.5)
()M (F = ¢1) = (A2) 7 (f2 = 9p) =+ = (k) (fn — dn) = Dp.
It means that system (2.3) is transformed to the inhomogeneous linear
equations of heat conductivity with a condition of Cauchy (2.5). It is well-

known that the problem (2.5) with enough smooth initial data is decidable
[11]. Namely, the strict solution is

n
/— _[Rn exp[ [ BSO(xl + 214Ut ..., Xg + 214 ut)dry - dr,
1
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\/_J .[R” { { n D@O(xl+211m, e Xp

+ 2104/t — 5); ) x dtq -+ dr,ds
= W(X, o Xyo ), (S — X = 2754/ut; S — X = 214/t —5)),  (2.6)

¥ is a known function. The solution (2.6) has the same properties of the
usual solution of heat conductivity equation. For example, throughout and for
definiteness, we always assume that the following assumptions are satisfied:

sunp| DXy | < By sup| DXDG(x, oy Xn, 1) ] < KoQ(t) < By, (k = 0, 2),
R T,

[12], Q(t) : KOJ': Q(s)ds < Bs: J';O At Tt = g,
(j=120<p<ng <),
FI eXp (‘El + e+ Tn |D SO(I]. vy |d‘C1 d‘En < [31

suprj _[ exp(— (rl + - +rn))|Dkq>0 ey I s)|d11 -drpds < Bg,
SUp x/_J. exp{ (Z Ti B {,Zil Tj | x |90|’J.(|1, |n)|}dfl~-~drn <m/21 nBy,

1 n
Eo bt 5 o
X |cDO|j(I1, vy s 8)|dry -+~ drpds < nv2nB,oVt = Bst;

sup

1
- 2
(sup [, 26)] @004, - 30, 9) |2dsj < Bo/ay,
Rn
By =nV27'nB; B = max Bi; (Vhao + oy + Viaz )B < B

2.7)

Then the solution (2.6) of problem (2.5) is bounded by norm of the space

VV;?(D*) and we get estimations

|9 W72 (D,) < M (B +Ba)v/ah +Bo < 2mByey +Bo = Ku, (0 <my = const).
2.8)
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Hence, by transformation (2.2), we have the strict solution of system
(1.1) which satisfies the condition (1.2). According to (2.1) and (2.7), there
is a conditional smooth and unique solution of the Navier-Stokes problem in

W2, (D,) that is defined by (2.2), at that

n n n
IVhaz, (0, = 2% hizeo,) = 248 hiz(o,) < doKe, [do - zxi}
i=1 i=1 i

(2.9)

Theorem 1 (Weak solutions to the Navier-Stokes system). Consider the
Cauchy problem (2.5) for linear equations of heat conductivity type associated
with the Navier-Stokes system (1.1) by (2.2), when the spatial domain

T. = R" x R,. Assume that the initial data satisfy conditions (2.1), (2.7)
and finally, take place (2.8), (2.10). Then the Cauchy problem for the
Navier-Stokes equation (1.1) admits a global-in-time weak solution in

Wf(D*). Therefore, the Navier-Stokes system has the unique solution in

an;k(D*)-

Remark. Results of the specified point are connected with condition
(2.2). It is known that not always the initial data is satisfied with the given
condition. Therefore, in Section 3, we consider Navier-Stokes system (1.1)
with the general condition (1.3).

3. Fluid with Small Viscosity

In Section 3, we consider the Navier-Stokes system (1.1) and we
establish an existence theory and uniqueness of a solution for the Navier-
Stokes system, when the initial data have certain restrictions. With that end
in view, let us consider updating of the basic method (2.2), when
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fi = Lifo(Xe oy Xn, 1) + @iy X1y oy Xp, 1),
(Xg, oo Xy, 1) € T = R"[0, Ty,
| 9isy | < Con/d0,

(i=1..,n;0<Cy=const; 0< 3§y =const << 1),

(3.1)

here 8, 0 <X, (i =1, ..., n) are fixed constants. We see that the components

of speed grow faster than the components of speed in (2.2) by the regulatory
functions Q;, (i =1, ..., n), where 0 < p < 1.

There are the various partial experimental methods connecting speed and
pressure. Here we offer the method using regulatory functions for getting
connections between pressure and speed, and this distribution law allows us

to express speed in the integral form, when v € R".

Offered method of integral transformations reduces the nonlinear Navier-
Stokes problem to inhomogeneous linear problem of heat conductivity. In this
case, problem of heat conductivity is reduced to the system of integral equations
of Volterra and Volterra-Abel [11]. Thus, it is possible to find the analytical
solution by the theory of the integral equations.

Let the components of a vector of speed v and f;, (i =1, ..., n) be the

components of a given externally applied force satisfying conditions (1.3) and
(3.1). Then, by transformation

Vi = A9(Xq, ooy Xpy £) + Qi (Xq, oy Xpys t)exp(—&:—u), (i = 1,_n),

1 r2 .
Qi=—"»~—— exp| ——— [vpi(Sq, ..., Sp)dS;---ds,, (i =1 n),
i o )" -[R” p( 4“tJ 0i (51 n)dsy n ( )

9lico =0 Qilizg =Voi(4 - ), V04, - Xy) €R™ (i=1n),

(3.2)
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the Navier-Stokes equation (1.1) becomes simpler because

(X, - ) € R", te€(0,Tp]:

1 t t
Vit = AjS — ol — exp( 0“) + Qtexp( 60;1]’
n

R S VTR BN IR IR I

Qjr = ﬁIRnT;tJ EXF{ [;TJ]JVOI“(Xl + 2yt ., X
+ 21,4 /ut)dg - drp,
(IJ = Xj +2’Cj\/ﬁ; Sj _Xj = ZTJ\/Ev J =ﬁ),

t
li =29 o +exp( 5 u)Qix?" (m=1,2),

n
1
Dz = ﬁJ‘R” exp[ [JZT D Vouz (% + 2uut, .. Xq + 2tp/ut ) d -+ iy,

n

1
PAQ; = ﬁJ.Rn exp[— ZT%DZVOHZ(M + 2tiut, o Xp
m ) N
+ ZTM/E)drl -dt, = |integrating by parts| = I . ‘/—Z Tj

R

X exp(—(rl2 +ot rﬁ))vonj(xl + 211\/E, oy X Zrn\/_)drl drn = O,

ie, Qi = pAQ;,  (Qilizo = Voi (X, - Xn)),

pAV; = u{k AS + exp( )AQ,},
o

Vit — pAY; = A9 — SoiuQi exp(—s(t)—u) —uhAY, (i=1n); divv=0:

n

n n n
D k% =0 Dy =0 D AONGy = xis[ijsxj] =0, (i=1n),
i=1 i=1 j=1

j=1

n n

2t
Z;Vjvixl [Zx SQX + ZQ iAi9y ]exp( 6—) + exp(—SO—H)Z;QjQin.
i= i=
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Really, by (3.2) and (3.3), from the problem (1.1)-(1.3), we get

- [zx oos, 2 S0yt Jexp(_ﬁ_} ool 230000

1
- fl _pri + —

From system (3.4), by APS and conditions (3.1), (3.3), we obtain
Lap— -0 Fy +exp—=-|B[8,, .. 9, 1\, (n23)
P "° S e T e

1 1
SP= IR" rn_Z{Fo(sl, o S 1)

+(B[9g), -y 95 ])(sl vy Spp t)exp(—&z—“)}dsy--dsn

e (ol 7))
= Fo(X{ + T1y ey Xy + T3 1) +| XP| —=—
X Rn\/ﬁ O(l 1 n n) p 60“

(B[O s s Op, D (Xe + T4y vy X + T3 1) pTg - ATy

i=1j=1 i=1\ j=1
Fo = (0, )1[_2 fix, + exp(—;—t)z %{ZQJ—SIX] }H
i-1 T S |
=2(n-2)[r2 )] Wr (5i—-%X =71, h =X +7;i=1n)

(3.5)
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This is a distribution law of pressure in the form of (3.5). At first, the
similar results were obtained in the paper [7]. By (3.5), the system (3.4) is
equivalently transformed to

9t = O(Xq, vy Xp, t)+exp(—£—u)m(x1, ey Xps 1)+ LAY,

n n
_ 1 t
® =dg?t Q: —ex[——jﬂb X1, Xn, t); dg= ) A >0,
0 [Z I}SOH p 3 1(x n 1) do IZ:;‘ i
@ = fo+d [ch.so exp[—jz{za Q]

i=1 i=1\ j=1

_J‘Rn{z Ti(n_Z) (Fo(X1+’E1,...,Xn +Tn;t))}d‘tl---d‘cn],

2 2\n
i—1 \/(rl +o 4 Th

Noces

i 1\/(T1 +- +T%)n

x {(B[Sﬁl’ e O DO+ 7T, oo Xp + T t)}} dfl...dfn]}

(H]_ZXi+fi,i=ﬁ).

(3.6)
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The problem (3.6) leads to the system of the integrated equations

9="T+ ann_nJ‘(IJR” (ex [ 4M(t2 )Dco(sl, ceer Sns s)exp(— 80%)

N ds; ---ds,ds

(Vu@-9))"
=7+ \/rlc—” .[(:.[R” exr{—(; riz]}o(xl + 21/t =), oy Xq

o= {dol(r(ﬂ)[Z[leQiXJ ]] + Z(FJ(D)QJ
o1\ :

x {(B[[®, .., Ch@]) (Xq + Tq, ey Xy + T t)}}d%l-nd%n}
= (Fo(x))(xl, vy Xps t),
Y(Xq, ooy Xy 1) = FI IR” xp[ [, > J]CD(Xl + 21/t =9), .y Xn
+ 21,4/1u(t = 5); s)dtq ---drpds,
(si =% = 2miu(t—s); i =1n),

(3.7)
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where

1t r? —(X = i)
9y =Ty +mj J n[exp(— 4“(,[_8))} 2u(t=5) (S, -y Sy S)

( sj ds; ---ds,ds
X eXpP| —

Sok)  (Ju(t—s))"
Ty \/—J. J.R” Xp{ ( 1 Dm(xl+211«/p(t—s),..., Xn

= (T;0) (X, oo X, )(i =1, 1),

oo, .. Tyl = 0, [Z[Zx o, }r@ +Z[ZQ,XF M

i=1\ j=1 i=1\ j=1
1..,130

o(x, ) eCYOT), [xeR"te[0 Tol;Cto(M)=C n (T)]

The system (3.7) consists of the integral equations on a variable
(X{, - Xp, t) € T. We need to establish that the precompactness [11] of the

family of (3.7) solutions satisfying, in other words, from any sequence, we
can extract a subsequence that converges (in a suitable topology) to a
solution to (3.7). This is the property required in order to deduce the strong
convergence of approximate solutions to (3.7) and eventually, establish the
existence of actual solutions. On the other hand, several standard methods are
available for the construction of approximate solutions, one can for instance
use Picard’s method and we refer to paper [11] for further details concerning
system (3.7).

Really, since 8¢ is small enough number, the operator I'y satisfies conditions

of a principle of compression. Then the solution of system ((3.7), the second
equation) o = I'yo, can be found by Picard’s method, that is,
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FO . kro(\/%) <1 Fosrl C Srl’

Sp(wg) ={o:lo-wg|<n, (X, .. Xy, t)xT}

(3.8)
Om+1 = Foobm, (m =01 ),

kr <1
| omst - ole < (k)™ —L——0,

m—oo

here

[Tol <M+l ol (T, o <M; = const;m =0,1),

|Tio| <Mj + \/Tlt_nj.c:.[R“ exp(—[ér?D T leXp(_Soiu)ﬁ

]

1
x dty -+ drpds| o | < My +CiyfSg o, (Cr =27 ne 24n),

n
L IR” exp[—(Zr?Bhi |dty -~ dty < - <V270n,

i=1

1
xy8ps Tds < e 2my2715y,
1
— 2 Y — —
(supwe ™" =e 24271 y = 4t(5om) ™),

y>0
Jole <@—kr) Mz, (0 < My = const).

N

Hence, by ((3.7), the first equation) 9 = ', it follows:

Sm =Fcom, (m=0,1, veey C2=80u<80;0<],l<1),

m kro <1 (39)
19m =8 < Cofl om -l < Calky)) ' ——— 0.
m-—oo
By taking into account the over established iteration process and the
corresponding inequalities, one can state the following, i.e., the inequalities

(3.8) and (3.9), assure the system (3.7) solution unigqueness.

Really, let us suppose that the system (3.7) does possess not only the
solution {9, @} but also another one {9, ®}, where $ =T'® and ® =y o.
It follows, by putting



Existence and Uniqueness of a Solution ... 603
{||co—a||cskro||m—an, (kg >0),

[8-3]c <Colo-oc.

which is satisfied if and only if [0 - @[ =0, ie, o =®; 9= 9.

Further, on the basis of (3.2), the sequence {v; m}go converges to v;,

Vim = A9m + Qi(Xq, o Xp, t)exp(—%) =AY, (=1Lnm=01..),

oM
kr <1 ~
[Vim =il =%l 9m = 8l = AiCalkry )™ — 20, ( = G(Do))
(3.10)

But if the successions’ {9y,}y and {v; n}5 convergence conditions

have been studied, then the assertion lim A9, (i =1 n) belongs to the
m-—oo

classes of functions él(Do). Thus, we have

Theorem 2. Consider the Navier-Stokes system (1.1) posed on the T =
R" x [0, To] and with prescribed initial data (3.1) and conditions (3.8)-
(3.10). Then there exists the unique solution of the system (3.7) in él(DO).
Therefore, by (3.2), the Navier-Stokes system has the unique solution in
Gr(Dp).

Remark 1. The similar results are take place for fluid with viscosity,

when Pis = 0. In this case, 0 < 8y <1 (see (3.2)), it is entered taking into

account a condition (3.8).
4. Conclusions

The offered analytical methods of solution of nD Navier-Stokes
problem transform this problem to inhomogeneous linear equations of
heat conductivity type under Cauchy condition with enough smooth initial
conditions, without attraction of any additional conditions. The analytical
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solutions of transformed equations are regular with respect to viscosity factor
and simplify analysis of the initial problem in mathematical sense.
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